
Leveraging Knowledge Graph for Open-domain
Question Answering

Jose Ortiz Costa
Department of Computer Science

San Francisco State University
San Francisco, USA

jortizco@mail.sfsu.edu

Anagha Kulkarni
Department of Computer Science

San Francisco State University
San Francisco, USA

ak@sfsu.edu

Abstract—Rich and comprehensive knowledge graphs (KG)
of the Web, such as, Google KG, NELL, and Diffbot KG, are
becoming increasingly prevalent and powerful as the underlying
AI technology is rapidly progressing. In this work, we leverage
this ongoing advancement for the task of answering questions
posed from any domain and any type (factoid and non-factoid).
We present a framework for knowledge graph based question
answering systems, KGQA, and experiment with an instance of
this framework that employs Diffbot KG. The unique features
offered by KGs, such as, rapid query response time, connections
between related graph objects, and structured information, are
used to design a QA system that is effective and efficient.

Index Terms—Automated Question Answering, Diffbot Knowl-
edge Graph, Information Retrieval, Natural Language Processing

I. INTRODUCTION

Automatic question answering problem (QA) has a long
and rich history [3], [25], [28]. Early QA systems focused
on narrow domains, and used hand-built rules and knowledge
bases to understand the question, and then to answer it. With
the advent of WWW, and developments in Natural Language
Processing (NLP), Information Retrieval (IR), Data Mining
(DM), and Machine Learning (ML) the QA systems have be-
come increasingly less constrained. Open-domain QA systems
that leverage WWW for the breadth of data it offers, are being
extensively researched [2], [23], [24], [26], [27], [31]. The
high-volume and the data redundancy offered by WWW is
leveraged by many of these QA systems to compensate for the
lack of structure to the data. However, there is renewed interest
in using structured data, specifically knowledge graphs, for the
QA problem [1], [6], [8], [11], [21], [22], [32], [33]. Unlike the
previous KGs, however, the newer KGs are built from the data
on the WWW using Data Mining (DM) and Machine Learning
(ML) techniques. Examples of such KGs are Google KG [19],
NELL [12], and Diffbot KG [18]. Advances in Deep Learning
and Computer Vision are rapidly improving the depth, breadth,
and connectivity of the KGs being created from the WWW.
As such, KGs are becoming powerful tools for tasks, such as,
answering questions from any domain.

Driven by these observations we propose a framework for
knowledge graph based question answering approaches. To
develop this QA framework we harness the unique properties
of KGs: 1. the data redundancy that propagates from WWW

to the KG, 2. easy access to the links between data objects,
3. the structure overlaid on the data, 4. ability to run queries
against the KG extremely efficiently, and 5. dynamic and up-
to-date nature of the KG. The first component of our system
exploits data redundancy and low query latency to design a
light-weight and versatile approach for transforming the user
question into multiple queries. To obtain the answer-bearing
data object in the second module, we leverage the structure
and the connectivity in the data. In addition to other signals,
we employ the recency property of the KGs to select the final
answer. In this work, we experiment with a specific instance
of this framework where the Diffbot KG is used to power the
QA approach (KGQA).

II. KGQA: KNOWLEDGE GRAPH BASED QUESTION
ANSWERING APPROACH

As shown in Figure 1, our system is structured as a
pipeline of four main components: Query Preprocessing Mod-
ule (QPM), Multi-query Formulation Module (MQFM), KG
Object Extraction Module (KGOEM), and Answer Extraction
and Selection Module (AESM). The first module, QPM,
performs basic textual and grammatical processing steps on
the original user question. MQFM, generates multiple queries
from the cleansed version of the question. These queries are

Fig. 1. KGQA System Architecture Diagram

then executed against the KG by the third module, KGOEM,
and the extracted information is passed on to the last module.
AESM then extracts short and focused candidate answers,
from which the final answer is selected. Each of these com-
ponents are described in details next. Note that only one of
these modules, KGOEM, interfaces with the knowledge graph,
and all the other modules are agnostic to the specific KG
being used by the system. Thus the proposed approach can
be viewed as a framework for KG based QA systems where
other knowledge graphs can be employed by adapting just one
module of the framework. We will use the following question
as a running example throughout this section to illustrate the
function of each module: “How talls is Mount McKinley?”.

A. Question Preprocessing Module (QPM)

This module performs light-weight preprocessing of the
question that consists of four steps: filtering out sentences
without question mark, running basic grammar check and
correction, tokenization, and stop-words removal. An open-
source Python library is employed for grammar check and
correction [14] of the question. If there are any corrections
suggested by the library, then they are always accepted and
used to update the question. The original question from the
running example is altered to “How tall is Mount McKin-
ley?”, by this step. Next, tokenization splits the question
into an ordered set of words using the tokenizer tool of
Natural Language Library Toolkit (NLTK) [20], where the
order among the tokens is dictated by their order of appear-
ance in the original question. The high-frequency and low-
information bearing words, such as, the, and, are removed
from the set in the stop-words removal step. The default stop-
words list provided by NLTK is employed for this filtering
step. The resulting ordered set of tokens is represented as:
T = (t1, ..., tm). For the running example the ordered set is
T = (“tall”, “Mount”, “McKinley”), and m = 3.

B. Multi-Query Formulation Module (MQFM)

This module is organized into two subcomponents: (1) The
first step generates n-grams from the the ordered set of tokens
provided by the previous module. (2) The second step creates
multiple queries from those n-grams.
From tokens to n-grams: The ordered set of tokens T =
(t1, ...tm), is used to create set G = {g1, ..., gi, ..., gm} where
each element of the set G, gi, is a set itself that represents
grams (i.e. unigrams, bigrams, trigrams, etc) of length i.
Each set gi is constructed by enumerating all sequences of
consecutive i tokens from T . The size of each gi set is
specified by: |gi| = m − i + 1, and thus the size of G is
|G| =

∑n
i=1 |gi|. For the running example, the generated set

is: G = {g1, g2, g3}, where:
• g1 = {(“tall”), (“Mount”), (“McKinley”)}
• g2 = {(“tall Mount”), (“Mount McKinley”)}
• g3 = {(“tall Mount McKinley”)}.

From n-grams to queries: A set of queries are constructed
in this step: Q = {q1, ..., qm} as follows. The first query, q1,
consists of a boolean conjunctive query composed on all the

unigrams in set g1. The remaining queries, qi, are built using
two sets of grams: gi, and g1. For each gram gji ∈ gi (say,
“Mount McKinley”), a sub-query, qji is defined as a boolean
conjunction of the gram, gji , and all the unigrams from g1
that are not in gji (e.g. “tall”). Field-restriction operators are
then added to each query such that gji is matched against the
document title field, and the unigrams are matched against the
document text field. The motivation is to identify documents
where the central topic as captured by the title field matches
the gji gram. A boolean disjunction on all such sub-queries,
qji , creates the query, qi. Using this approach, the set of three
queries generated for the running example are as follows: Q =
{q1, q2, q3}, where:
• q1 = (“tall” AND “Mount” AND “McKinley”)
• q2 = ((title:“tall Mount” AND text:“McKinley”) OR

(title:“Mount McKinley” AND text:“tall”))
• q3 = (“tall Mount McKinley”).

C. Knowledge Graph Object Extraction Module (KGOEM)

The main goal of the KG Object Extraction Module is to
retrieve the most relevant data objects from the Knowledge
Graph using the queries from the previous section. In this
work we employ a large, rich, and highly-responsive knowl-
edge graph powered by Diffbot [18], that are organized into
millions of types using machine learning, and computer vision
techniques. We leverage this KG to obtain answer-bearing
content from the Web. This is accomplished in two steps: 1.
Data object retrieval and ranking, and 2. Data object selection.

1) Data Object Retrieval and Ranking: This step is re-
sponsible for selecting a few promising data objects for every
query generated by the previous module. The linked nature of
the KG, and the retrieved data objects are leveraged jointly
to identify & retrieve additional data objects that were not
retrieved by the query. Diffbot provides an array of standard
APIs to obtain data from the KG. We use Diffbot’s search API
to run the set of queries generated in MQFM (Q) against the
KG. For each query, Diffbot retrieves multiple data objects in
JSON format. For each data object Diffbot provides a confi-
dence score that is an estimate of the relevance of the object to
the query. Summary statistics, such as, number of hits, number
of documents in the collection are also provided. The returned
objects can be of different types (article, discussion, video,
image, product), and a different set of fields are returned for
each type. We have developed Custom APIs to process and
extract textual fields from each object type that are of value
to the task. These are caption fields for video type, title for
image type, discussions for post type, and description fields
for product type. The article object type is processed more
deeply (described next) since it is the most text-heavy type.

In addition to the article title and content, Diffbot provides
a list of tags for each article [17]. The tags are entities that
have been extracted from the article content and co-referenced
with other data sources, such as, DBpedia. For our running
example, one of the tags associated with one of the retrieved
article objects is Denali, the new name of Mount McKinley. As
such, these tags can provide valuable additional information

that can reduce the vocabulary gap between the question
and the relevant content. Diffbot also provides the number of
hyperlinks associated with each retrieved object (web-page).
The tags and links model the connectivity of the object, and
thus can be viewed as proxies for the quality and authority
of the object. Based on this observation we formulate the
following object scoring function:

S(o) = a ∗ cf(o) + b ∗ nt(o) + c ∗ atc(o) + d ∗ nl(o)

where cf(o) is the confidence score of object o. nt(o) is the
number of matching tags associated with o. A tag is considered
as matching when at least one of the query terms appears in
the tag label. Diffbot provides an occurrence frequency of each
tag label in the object’s content. The average frequency over
matching tags for o is provided by atc(o). nl(o) is the number
of hyperlinks associated with o.

The scores assigned by this function are employed to
rank all the retrieved objects for a query. Furthermore, the
distribution of these scores is leveraged to infer how many of
the top ranked objects should be selected for further analysis.
Specifically, let O = (o1, o2, ..., on) be the ordered set of
retrieved objects for a query, and let x = S(o1)−S(o2), which
is the difference in scores of the top two ranked objects. For
i = 3, .., n, if S(oi−1) − S(oi) > 2 ∗ x, then discard objects
oi, o(i+1), ..., on. This approach retains a few highly scored
objects for each query.
Tag Harvesting: For each entity tag, Diffbot provides two
additional pieces of information: 1. an URI to a reference
article, and 2. a confidence score based on tag’s relevance to
the article content. We harvest the URI field using Diffbot’s
article API. The article API first analyzes the content of
the URI to categorize the page into one of the above five
types (article, discussion, etc.), and the returned data object
is added to the set of selected objects for the question. The
top ranked tag associated with the object is always harvested.
For the remaining tags, however, they are harvested only if
they clear the following two-step filtering approach. The first
filter is based on the confidence score associated with the tag.
Specifically, for object X , its tags with confidence score higher
than the average confidence score, computed on tags for object
X , are selected. From this subset of tags, only the ones which
match at least one n-gram from the set G are retained. The
resulting set of tags is harvested and the additional content
obtained by each tag becomes part of the original data object
associated with that tag.

2) Data Object Selection: The goal of this component is to
select the best data objects from all the objects selected in the
previous step. To accomplish this, first the data objects selected
for each query are ranked based on the S(o) scores. Thus, for
each query, qi, an ordered set of data objects, Oi = (o1i , ..., o

k
i)

is now available. Each set Oi is locally sorted, but the global
set of data objects O1, ..., Om retrieved for queries q1, ..., qm,
is not sorted. In order to identify the n best objects, our system
uses the following global scoring function to rank the data
objects. Let O be the set of unique objects derived from
O1, ..., Om. ∀o ∈ O,GS(o) = (

∑i=m
i=1

1
rank(o,Oi)

), where

rank(x, y) returns the rank position of the object x in the
ordered set y. This function captures both the rank position,
and retrieval frequency of each object. Thus, objects that are
ranked highly in more number of individual ordered sets will
be scored higher using this function. We wish to retain only
a few such highly ranked objects. For this final selection step
we employ the same approach used for query-level top object
selection in Section II-C1. However in this case, the global
score, GS(o), is used instead of the object scoring function
S(o). The selected objects are then passed on to the next
module as the most promising answer-bearing objects. In case
of ties, the object with the most recent time-stamp is ranked
first, to favor more current data. In our running example, the
highest score is tied between two objects. However, the one
with earlier time-stamp specifies 20,320 feet as the height of
Mount McKinley, but the one with more recent time-stamp
states that new geological surveys announced that Mount
McKinley is 20,310 feet high instead.

D. Answer Extraction and Selection Module (AESM)

This module is tasked with extracting candidate answers
from the objects selected by the previous module, and then
selecting the best sentences to construct the final answer.

1) Candidate Answer-sentence Extraction: This module
starts by extracting data from the textual fields of the various
objects selected by KGOEM. The text data is then segmented
at sentence level, and then vectorized using tf-idf representa-
tion. For each of these sentences si, a score sent score(si)
is assigned as follows:

I∆dist(si) = (
|P | − 1∑|P |−1

j=1 (pj+1 − pj)
)

sent score(si) = cos(~si, ~s0) + I∆dist(si)

where cos(~si, ~s0) function computes the cosine similarity
between the sentence si vector and the question vector s0.
The I∆dist(si) function is the Inverse Delta Distance, where
pj is position offset of a term that appears in both, question
and the answer-sentence, si. P is an ordered set of offsets for
such matching terms in si. In essence, I∆dist(si) computes
the inverse of the average distance between matching terms
(in words). The intuition behind this is that positional affinity
of question terms in the answer is an indicator of answer
relevance. For our running example “How tall is Mount
McKinley?” below are two candidate answer-sentences. The
second sentence is scored higher by sent score() than the
first due to higher cosine similarity score (more terms overlap
between sentence and question), and also higher inverse delta
distance (shorter distance between matching terms “mount”,
“McKinley” and “tallest”)
• “The administration decided to change the name of mount

McKinley to Denali, even though it had been known as
McKinley for decades”

• “If the 20,237 feet calculation is correct, that makes
mount McKinley the tallest peak, still, by more than 680
feet”

2) Answer Selection: Now that the candidate answer-
sentences are scored, the average score over all the sentences is
computed, and only the top sentences with higher than or equal
to average score are retained for this step. These sentences
are then grouped based on their source sections, such as, the
different posts in a discussion object type, to generate the final
answer. This simple approach offers two advantages. First,
the length of the generated answer (in terms of number of
sentences) is data-driven. Depending upon the distribution of
the computed scores, the number of answer-sentences with
higher than average can be few or more. In the extreme case
of uniform distribution of scores, all the answer-sentences will
be retained to generate the final answer since the score of every
sentence will be equal to the average score. Second, grouping
the sentences based on their source section improves the flow
of the generated answer.

III. EXPERIMENTAL METHODOLOGY

The experimental methodology adopted to empirically test
the proposed approach is described next. We assess the efficacy
of the approach at answering both, factoid, and non-factoid
questions.

A. Baseline QA Systems

We employ four baseline systems to conduct a thor-
ough comparative analysis. The first two baselines (BKGQA,
SBKGQA) are variants of our approach that illustrate the
utility of different sub-components. The BKGQA system uses
the question directly as a single query to the Diffbot knowledge
graph, the top-ranked single data object in the retrieved results
is selected as the answer-bearing object. Three sentences with
highest cosine similarity with the question are concatenated
to generate the final answer. The SBKGQA system performs
multi-query search, however, its formulated queries are not re-
stricted to the text and title fields. Instead of the object scoring
function S(o) described in section II-C1, only the confidence
score provided by Diffbot is used to rank the objects for each
query. Lastly, the answer selection approach is the same. The
other two baselines are state-of-the-art QA systems as ranked
by the TREC LiveQA task. SF-State-QA [5] is a QA system
that uses sophisticated query generation approach based on
dependency parsing, and grammatical rules. The query is then
run against the Web using commercial search engines’ APIs,
to obtain up-to-date and high-quality web-pages. Finally, the
answers extracted from these web-pages are ranked using
trained answer ranking models. Although this system does
not use a knowledge graph as its information source, it is a
well-designed QA system that harnesses the information on
the Web through the commercial search engine APIs. The
Open Advancement of Question Answering (OAQA) [29], and
the Encoder-Decoder [30] are also two baselines that we use
in our evaluation results. The first one outperformed all its
competitors in TREC 2015 LiveQA Track [10], and the latter
is an improved version of OAQA presented in the TREC
2016 LiveQA Track [9]. OAQA uses a BLSTM to process
the data while Encoder-Decoder uses a Recurrent Neural

Network model. We also include as baseline EmoryCrowed as
a reference baseline since it outperformed all the other systems
in [9].

B. Evaluation Data and Metrics

A set of 100 factoid questions was sampled at random
from an open source benchmarking dataset, which consists
in a combination of two sub-datasets, IRC and TREC of 867
curated factoid questions (v2) [13], For evaluation with non-
factoid questions, we sampled a set of 100 questions each from
TREC LiveQA 2015 [15], and 2016 [16] datasets, each of
which contains 1000+ non-factoid and non-curated questions.
To evaluate the end-to-end performance of our system, we
conducted manual assessment of the answers generated by our
system for the sampled questions. Each question-answer pair
was judged by two annotators on the official scale used at
TREC LiveQA 2015 (0: non-readable or unanswered, 1: poor,
2: fair, 3: good, 4: excellent). The complete set of question-
answers from TREC LiveQA 2015 (1087 Questions), and 2016
(1015 Questions) is used for automated evaluation described in
Section IV-A. Effectiveness metrics: To quantify the overall
effectiveness of the QA systems we employ the official metrics
established by TREC LiveQA: avgScore(0-3), and success@i+
metrics. Recall that every answer is assigned a score between
0 and 4 by annotators. The scores 1 through 4 are adjusted
to 0 through 3 scale, first. Then, the average score over all
the answers is computed to generate the avgScore(0-3) value.
The score adjustment ensures that poor answers (1) do not
contribute to the avgScore value. succ@i+ metrics is the ratio
of number of questions with scale i or above, and the toal
number of questions. In addition, we employ Cosine similarity,
and Jaccard coefficient to algorithmically evaluate the answer
quality by comparing it with human generated answers using
these similarity metrics. Efficiency metrics: The efficiency is
quantified using average run-times for each individual module,
and for the end-to-end system.

TABLE I
END-TO-END QA SYSTEM EVALUATION RESULTS.

avgScore(0-3) succ@2+ succ@3+ succ@4+
TREC 2015 non-factoid

BKGQA 0.520 0.360 0.130 0.030
SBKGQA 1.480 0.650 0.480 0.356
KGQA 1.920 0.880 0.640 0.400
SF-State-QA 1.420 0.650 0.430 0.340
OAQA 1.081 0.532 0.359 0.190

TREC 2016 non-factoid
BKGQA 0.400 0.290 0.090 0.020
SBKGQA 1.670 0.730 0.540 0.400
KGQA 1.960 0.850 0.650 0.460
SF-State-QA 1.570 0.760 0.500 0.330
EmoryCrowed 1.260 0.620 0.421 0.220
Encoder-Decoder 1.154 0.560 0.395 0.199

IRC-TREC Curated factoid
BKGQA 0.310 0.231 0.057 0.035
SBKGQA 1.690 0.800 0.540 0.350
KGQA 2.170 0.920 0.690 0.560

IV. RESULTS AND ANALYSIS

We evaluated the developed system’s performance, in terms
of effectiveness, and efficiency, both. The results and their
analyses are reported in this section.

A. Answers Quality

Table I reports the results for the non-factoid and factoid
questions datasets.

Compared to two of the baseline systems, BKGQA and
SBKGQA, the proposed system, KGQA performs consistently
and substantially better across all the metrics. We see this
trend for all the datasets, TREC LiveQA 2015, TREC LiveQA
2016 and IRC-TREC. Recall that BKGQA and SBKGQA
also use the same information source, Diffbot KG, and thus
this difference in performance is especially noteworthy. It
illustrates the value of two key aspects of our approach: 1.
multi-query formulation targeting specific fields, and 2. tag
harvesting. The former facilitates manifold probing of the KG
for the same question, and the latter exploits the underlying
graph to assimilate information that is indirectly related to the
question.

One of the key challenges for researchers working on
question answering systems, especially with non-factoid ques-
tions, is evaluation. One, it is nearly impossible to automate
the answer evaluation task. As such, we conducted manual
assessment for both factoid and non-factoid datasets, as is
described in Section III-B. The second challenge is not specific
to QA systems – reproducing results from other QA sys-
tems. The evaluation methodology used by Pithyaachariyakul
et al., 2018 [5] for the SF-State-QA system is the most
comparable to ours, where 100 randomly selected question-
answer pairs were manual assessed for quality. As per the
results in Table I, when comparing KGQA with SF-State-
QA, the trends are inconsistent across the two datasets for
succ@2+ metrics. However, if the focus is on high-quality
answers (good and excellent), then a consistent trend emerges,
KGQA outperforms SF-State-QA for both datasets. Table I
also specifies the performance of two other QA systems,
OAQA [29], and Encoder-Decoder [30], that were the best
performing systems in the LiveQA track at TREC 2015, and
TREC 2016, respectively. The results for these systems are

computed over the complete question collection of TREC 2015
and 2016 datasets (1000+ questions each). As such, these
result numbers are not directly comparable to the results for
KGQA. However, since KGQA results are computed on a
subset of these question collections, we can gather indicative
trends. The KGQA system outperforms the state-of-the-art
systems from both years. The improvements are bigger for
high-quality answers, which is in-line with the trend observed
with the other baseline system.

Table II provides results for a larger set of questions
that employs overlap-based automated evaluation. Since this
evaluation does not use explicit relevance judgments for the
generated answers, the absolute result values are less impor-
tant. Instead, we analyze the relative differences in the values
reported in Table II. The questions are categorized based on
their length (in words) in order to investigate the effects of
query length on the system performance. We see substantial
and consistent improvement in performance with KGQA for
short questions, and for long questions. For medium length
questions, all three systems are comparable when performance
is quantified with cosine similarity. Table II also reports the
average number of objects retrieved from KG per question.
Recall that for the baselines, top 10 objects are retrieved for
each question. KGQA however adopts a dynamic strategy
where the number of selected objects is dependent on the
question. These numbers demonstrate the value of employing
this dynamic strategy. For 2015 questions, only a few objects
are needed, while for 2016 questions, lot more than top 10
objects are needed to provided the competitive effectiveness.
The last set of columns in Table II report the number of
unanswered questions for each system. KGQA is consistently
more robust than the other systems.

B. System Efficiency

For all three datasets, Table III reports the average run-
time per question for the end-to-end system, and for every
individual module. As is evidenced by these results, KGQA
generates an answer for a non-factoid question in 32.5 seconds,
and for factoid questions in 20.1 seconds, on average. This
response time is substantially better than both, SF-State-QA,
and BKGQA. The response times are not made available by

TABLE II
OVERLAP-BASED EVALUATION RESULTS FOR KGQA SYSTEM AND BASELINE SYSTEMS.

Metric Jaccard Sim Cosine Sim Avg #Objects Ret #Unanswered Questions
Questionś tokens [0;10] [11;32] [33;) [0;10] [11;32] [33;) [0;10] [11;32] [33;) [0;10] [11;32] [33;)

TREC 2015 non-factoid
Num Questions 64 404 619 64 404 619 64 404 619 64 404 619

BKGQA 0.058 0.061 0.054 0.288 0.307 0.297 10 10 10 3 61 41
SBKGQA 0.089 0.067 0.077 0.291 0.272 0.313 10 10 10 2 42 18

KGQA 0.143 0.163 0.166 0.336 0.298 0.326 9 3 2 3 27 12
TREC 2016 non-factoid

Num Questions 122 343 550 122 343 550 122 343 550 122 343 550
BKGQA 0.043 0.063 0.066 0.206 0.292 0.302 10 10 10 3 47 45

SBKGQA 0.066 0.055 0.068 0.368 0.307 0.324 10 10 10 13 33 30
KGQA 0.184 0.166 0.176 0.386 0.292 0.335 16 17 16 11 22 37

TABLE III
AVERAGE RUNTIME PER QUESTION (MILLISECONDS)

End-to Query Object Answer
-End Formulation Extraction Selection

Non-Factoid TREC 2015-2016
BKGQA 35297.83 1.82 0.34 35295.67
SBKGQA 32629.14 1.65 0.17 32627.32
KGQA 32549.12 1.67 0.23 32547.22
SF-State-QA 36700.00 410.00 4360.00 41470.00

Factoid IRC-TREC Curated Wikipedia Based
BKGQA 22512.16 1.51 0.09 22510.56
SBKGQA 20495.32 1.31 0.10 20493.90
KGQA 20145.07 1.22 0.07 20143.78

the other baseline systems, OAQA, and Encoder-Decoder, and
thus the efficiency of these baselines cannot be analyzed.

At the module-level, one would expect BKGQA to be faster
than KGQA in the query formulation module, since BKGQA
simply uses the question as a query. However, that is not
the case because stop-words are retained in the BKGQA
approach which make KG querying slower. SBKGQA and
KGQA have similar performance in the query formulation
module. However, during the object extraction procedure
SBKGQA is slightly faster than KGQA because the latest
usually processes more objects for that module. SF-State-QA
employs a relatively shallow linguistic approach to transform
the question to query, but even this light-weight approach has a
high latency. This step is nearly 400x slower for that approach.

The shortest runtime per question reported by KGQA is for
the object extraction module. This indicates that the additional
probing of the KG with the harvested tags does not add
unreasonable overhead to this module. Furthermore, the data
fusion step employed to select the single best object also is
very efficient. The slowest module for all the three QA systems
is the answer selection module, which is expected, since large
amounts of textual data is being processed and vectorized in
this step.

V. CONCLUSIONS

This paper presented KGQA, a framework for knowledge
graph based question answering approaches that can respond
to factoid and non-factoid questions from any topic domain.
This framework harnesses the salient features of the rich and
comprehensive KGs learned from the WWW. Although we test
the framework with a specific KG in this paper, the framework
is designed to facilitate easy adaptation to other KGs. An end-
to-end evaluation with multiple datasets and baselines demon-
strates that the proposed approach consistently outperforms all
the baselines. This is especially true for high-quality answers.
In terms of efficiency as well, the proposed approach provides
the fastest response time. Testing the framework with other
KGs, and designing approaches to jointly use multiple KGs to
improve the overall coverage are part of the future work.

REFERENCES

[1] Malik M. K. Rashid M. U. Zafar R. Abbas, F. Wikiqa a question
answering system on wikipedia using freebase, dbpedia and infobox.
Sixth International Conference on INTECH, 2016.

[2] Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pinter, and Donna
Harman. Overview of the trec 2015 liveqa track. In TREC, 2015.

[3] Fischer S Black. A deductive question answering system. Harvard
University, 1964.

[4] Evans C. Paritosh P. Sturge T. Bollacker, K. and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD, 2008.

[5] Pithyaachariyakul C. and Kulkarni A. Automated question answering
system for community-based questions. In proceedings of the Thirty-
Second AAAI New Orleans, USA., 2018.

[6] Agarwal K. Purohit S. Zhang B. Pirrung M. Smith W. Thomas M.
Choudhury, S. Construction and querying of dynamic knowledge graphs.
2017 IEEE 33rd ICDE, 2016.

[7] L Stephen Coles. An on-line question-answering systems with natural
language and pictorial input. In Proceedings of the 1968 23rd ACM,
pages 157–167. ACM, 1968.

[8] J. Lehmann S.Auer D. Lukovnikov, A Fisher. Neural network-based
question answering over knowledge graphs on word and character level.
WWW ’17 Proceedings of the 26th International Conference on World
Wide Web., 2017.

[9] Dan Pelleg Yuval Pinter Donna Harman Eugene Agichtein,
David Carmel. Overview of the trec 2016 liveqa track. 2016.

[10] Donna Harman Dan Pelleg Yuval Pinter2 Eugene Agichtein,
David Carmel. Overview of the trec 2015 liveqa track. 2015.

[11] Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. Learning knowl-
edge graphs for question answering through conversational dialog. In
Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, pages 851–861, 2015.

[12] http://rtw.ml.cmu.edu/rtw/kbbrowser/.
[13] https://github.com/brmson/dataset-factoid curated.
[14] https://pypi.python.org/pypi/grammar check/1.3.1.
[15] https://trec.nist.gov/data/qa/2015 LiveQA/questions.txt.
[16] https://trec.nist.gov/data/qa/2016 LiveQA/questions.txt.
[17] https://www.diffbot.com/dev/docs/article/.
[18] https://www.diffbot.com/knowledge graph/.
[19] https://www.google.kg.
[20] https://www.nltk.org.
[21] Zou L. Wang H. Zhao D Hu, S. Answering natural language questions

by subgraph matching over knowledge graphs. IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING., 2017.

[22] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta.
Evaluating question answering over linked data. Web Semantics: Science,
Services and Agents on the World Wide Web, 21:3–13, 2013.

[23] Dan Moldovan, Marius Paşca, Sanda Harabagiu, and Mihai Surdeanu.
Performance issues and error analysis in an open-domain question
answering system. ACM Transactions on Information Systems (TOIS),
21(2):133–154, 2003.

[24] John Prager et al. Open-domain question–answering. Foundations and
Trends® in Information Retrieval, 1(2):91–231, 2007.

[25] Peter S Rosenbaum. A grammar base question-answering procedure.
Communications of the ACM, 10(10):630–635, 1967.

[26] Pum-Mo Ryu, Myung-Gil Jang, and Hyun-Ki Kim. Open domain ques-
tion answering using wikipedia-based knowledge model. Information
Processing & Management, 50(5):683–692, 2014.

[27] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Ha-
jishirzi. Bidirectional attention flow for machine comprehension. arXiv
preprint arXiv:1611.01603, 2016.

[28] Robert F Simmons. Natural language question-answering systems: 1969.
Communications of the ACM, 13(1):15–30, 1970.

[29] Di Wang and Eric Nyberg 2015. Discovering the right answer with
clues. 2015.

[30] Di Wang and Eric Nyberg 2016. An attentional neural encoder-decoder
approach for answer ranking. 2016.

[31] Shuohang Wang and Jing Jiang. Machine comprehension using match-
lstm and answer pointer. arXiv preprint arXiv:1608.07905, 2016.

[32] Xiaodong He Wen-tau Yih, Ming-Wei Chang and Jianfeng Gao. Se-
mantic parsing via staged query graph generation: Question answering
with knowledge base. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics, 2015.

[33] Xuchen Yao and Benjamin Van Durme. Information extraction over
structured data: Question answering with freebase. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics,
volume 1, pages 956–966, 2014.

